Enhanced Osseointegration of a Modified Titanium Implant with Bound Phospho-Threonine: A Preliminary In Vivo Study

نویسندگان

  • Yohei Okazaki
  • Kazuya Doi
  • Yoshifumi Oki
  • Reiko Kobatake
  • Yasuhiko Abe
  • Kazuhiro Tsuga
چکیده

Implant surface topography is a key factor in achieving osseointegration. l-Threonine can be chemically and stably bonded to titanium surfaces by phosphorylation. This study investigated the degree of in vivo osseointegration of an implant with a novel o-phospho-l-threonine (p-Thr)-binding surface. MC3T3-E1 cells were seeded on the p-Thr binding surface and machined surface disks, and initial cell attachment was evaluated. p-Thr-binding and machined surface implants were tested in vivo by implantation into the femurs of three male New Zealand white rabbits, and the osseointegration was assessed by measurement of removal torque (RT) and bone-implant contact (BIC) ratio. Initial cell attachment was greater for the p-Thr-binding than for the machined surface implant group (P < 0.05). In addition, RT and BIC values were higher for the p-Thr-binding surface than for the machined surface (P < 0.05). These results indicate that our implant with a p-Thr-binding surface can achieve enhanced osseointegration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titanium Implant Osseointegration in Rheumatoid Arthritis Patients: Two case reports

Case Implant rehabilitation in patients suffering from rheumatoid arthritis (RA) has been reported an improvement in the quality of life. Implanttreatment success depends on many factors like achievement of appropriate osseointegration. There are many controversies about theinteractions between anti-rheumatic drugs and osseointegration. Moreover, the scientifc evidence regarding implant survi...

متن کامل

New surface modification of titanium implant with phospho-amino acid.

The purpose of this study was to investigate a new biochemical surface modification technique for titanium implants using phospho-amino acid. Pure titanium disks were pretreated with 10 N HCl and ultrapure water at room temperature for 30 minutes respectively. Then these disks were modified with either L-threonine (Thr) or O-phospho-L-threonine (P-Thr) at 37 degrees C for 12 hours. X-ray photoe...

متن کامل

In Vivo Osseointegration Performance of Titanium Dioxide Coating Modified Polyetheretherketone Using Arc Ion Plating for Spinal Implant Application

Polyetheretherketone (PEEK), which has biomechanical performance similar to that of human cancellous bone, is used widely as a spinal implant material. However, its bioinertness and hydrophobic surface properties result in poor osseointegration. This study applies a novel modification method, arc ion plating (AIP), that produces a highly osteoblast compatible titanium dioxide (TiO2) coatings on...

متن کامل

Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning ...

متن کامل

Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells

BACKGROUND AND METHODS Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017